Telegram Group & Telegram Channel
🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1840
Create:
Last Update:

🧠 Одна из лучших вещей, которую можно прочитать, чтобы понять PPO (Proximal Policy Optimization)

Как правильно реализовать PPO? 37 деталей, которые почти никто не указывает

Полезное чтиво Исследователи из ICLR собрали 37 практических нюансов, без которых реализация Proximal Policy Optimization (PPO) часто оказывается нестабильной или неэффективной.

🔧 В статье разобраны:
• 13 базовых деталей — без них PPO просто не будет работать стабильно
• 9 дополнительных при работе с изображениями (например, Atari)
• 9 нюансов для задач с непрерывным действием (робототехника и физика)
• 6 универсальных оптимизаций, улучшающих сходимость и результат

💡 Примеры включают:
– обработку rewards перед обучением
– правильное использование GAE
– нормализацию входных данных
– трюки с масштабированием advantages
– обработку градиентов и dropout

📌 Почему это важно:
Эти детали влияют на производительность и стабильность PPO, но почти всегда остаются "между строк" в статьях и туториалах. Без них модель может "учиться", но не достигать ожидаемых результатов.

🔗 Оригинальный разбор + код: https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

#ReinforcementLearning #PPO #RL #DeepLearning #ICLR

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1840

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA